Đề thi Toán vào lớp 10 Khánh Hòa năm học 2014-2015

Đề thi tuyển sinh vào lớp 10 môn Toán Khánh Hòa năm học 2014-2015

Thời gian làm bài: 120 phút (không kể thời gian giao đề)

Bài 1: (2 điểm)

1) Không dùng máy tính cầm tay, tính giá trị biểu thức: A=\frac{1}{\sqrt{2}+1}-\frac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}

2) Rút gọn biểu thức B = \left( \frac{a}{a-2\sqrt{a}}+\frac{a}{\sqrt{a}-2} \right):\frac{\sqrt{a}+1}{a-4\sqrt{a}+4}  với a > 0, a ≠ 4.

Bài 2: (2 điểm)

1) Cho hệ phương trình: \displaystyle \left\{ \begin{array}{l}ax-y=-y\\x-by=-a\end{array} \right.

Tìm a và b biết hệ phương trình đã cho có nghiệm (x, y) = (2; 3).

2) Giải phương trình: 2(2x - 1) - \displaystyle 3\sqrt{5x-6}=\sqrt{3x-8}

Bài 3: (2 điểm)

Trong mặt phẳng Oxy cho parabol (P): y=\frac{1}{2}{{x}^{2}}

a) Vẽ đồ thị (P).

b)Trên (P) lấy điểm A có hoành độ xA = -2. Tìm tọa độ điểm M trên trục Ox sao cho |MA – MB| đạt giá trị lớn nhất, biết rằng B(1; 1).

Bài 4: (2 điểm)

Cho nửa đường tròn (O) đường kình AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B.

Trên cung \overset\frown{AB} lấy điểm M tùy ý (M khác A và B), tia AM cắt d tại N. Gọi C là trung điểm của AM, tia CO cắt d tại D.

a) Chứng minh rằng: OBNC nội tiếp.

b) Chứng minh rằng: NO ⊥ AD

c) Chứng minh rằng: CA. CN = CO . CD.

d) Xác định vị trí điểm M để (2AM + AN) đạt giá trị nhỏ nhất.

----- HẾT -----

Giám thị không giải thích gì thêm.

Gợi ý giải:

Bài 1: (2 điểm)

1) A=\frac{1}{\sqrt{2}+1}-\frac{\sqrt{8}-\sqrt{10}}{2-\sqrt{5}}=\frac{\sqrt{2}-1}{1}-\frac{\sqrt{2}(2-\sqrt{5})}{2-\sqrt{5}}=\sqrt{2}-1-\sqrt{2}=-1

2) B = \left( \frac{a}{a-2\sqrt{a}}+\frac{a}{\sqrt{a}-2} \right):\frac{\sqrt{a}+1}{a-4\sqrt{a}+4} với a > 0, a ≠ 4.

\left( \frac{a}{a-2\sqrt{a}}+\frac{a}{\sqrt{a}-2} \right):\frac{\sqrt{a}+1}{a-4\sqrt{a}+4}=\left( \frac{\sqrt{a}}{\sqrt{a}-2}+\frac{a}{\sqrt{a}-2} \right)\cdot \frac{{{(\sqrt{a}-2)}^{2}}}{\sqrt{a}+1}

\frac{\sqrt{a}+a}{\sqrt{a}-2}\cdot \frac{{{(\sqrt{a}-2)}^{2}}}{\sqrt{a}+1}=\frac{\sqrt{a}(1+\sqrt{a})}{\sqrt{a}-2}\cdot \frac{{{(\sqrt{a}-2)}^{2}}}{\sqrt{a}+1}=\sqrt{a}(\sqrt{a}-2)

Bài 2: (2 điểm)

1) Vì hệ phương trình: \displaystyle \left\{ \begin{array}{l}ax-y=-y\\x-by=-a\end{array} \right. có nghiệm (x, y) = (2; 3) nên ta có hpt:

\displaystyle \left\{ \begin{array}{l}2a-3=-b\\2-3b=-a\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}2a+b=3\\a-3b=-2\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}6a+3b=9\\a-3b=-2\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}7a=7\\2a+b=3\end{array} \right.\Leftrightarrow \left\{ \begin{array}{l}a=1\\b=1\end{array} \right.

Vậy a = 1, b = 1

2) Giải phương trình: 2(2x - 1) - \displaystyle 3\sqrt{5x-6}=\sqrt{3x-8}

Đề thi Toán vào lớp 10 Khánh Hòa năm học 2014-2015-3

Vậy pt có nghiệm x = 3.

Bài 3: (2 điểm)

Trong mặt phẳng Oxy cho parabol (P):

a) Lập bảng giá trị (HS tự làm).

Đồ thị:

Đề thi Toán vào lớp 10 Khánh Hòa năm học 2014-2015-1

b) Vì A ∈ (P) có hoành độ xA = -2 nên yA = 2. Vậy A(-2; 2)

Lấy M(xM; 0) bất kì thuộc Ox,

Ta có: |MA – MB| ≤ AB  (Do M thay đổi trên Ox và BĐT tam giác)

Dấu “=” xảy ra khi 3 điểm A, B, M thẳng hàng, khi đó M là giao điểm của đường thẳng AB và trục Ox.

- Lập pt đường thẳng AB

- Tìm giao điểm của đường thẳng AB và Ox, tìm M (4; 0).

Bài 4: (2,00 điểm)

Cho nửa đường tròn (O) đường kình AB = 2R. Vẽ đường thẳng d là tiếp tuyến của (O) tại B.

Trên cung \overset\frown{AB} lấy điểm M tùy ý (M khác A và B), tia AM cắt d tại N. Gọi C là trung điểm của AM , tia CO cắt d tại D.

Đề thi Toán vào lớp 10 Khánh Hòa năm học 2014-2015-2

a) Chứng minh rằng: OBNC nội tiếp.

HD: Tứ giác OBNC nội tiếp có \widehat{OCN}+\widehat{OBN}={{180}^{0}} 

b) Chứng minh rằng: NO ⊥ AD

HD: ΔAND có hai đường cao cắt nhau tại O,

suy ra: NO là đường cao thứ ba hay: NO ⊥ AD

c) Chứng minh rằng: CA. CN = CO . CD.

HD: ΔCAO đồng dạng ΔCDN ⇒ \frac{CA}{C\text{D}}=\frac{CO}{CN} ⇒ CA. CN = CO . CD

d) Xác định vị trí điểm M để (2AM + AN) đạt giá trị nhỏ nhất.

Ta có: 2AM + AN ≥ 2\sqrt{2AM.AN} (BĐT Cauchy – Côsi)

Ta chứng minh: AM. AN = AB2 = 4R2. (1)

Suy ra: 2AM + AN ≥ 2\sqrt{2.4{{R}^{2}}} = 4R\sqrt{2}

Đẳng thức xẩy ra khi: 2AM = AN Þ AM = AN/2    (2)

Từ (1) và (2) suy ra: AM = R\sqrt{2} ⇒ ΔAOM vuông tại O ⇒ M là điểm chính giữa cung AB

Toán cấp 2 © 2012 Toancap2.com