Ebook Bồi dưỡng học sinh giỏi Đại số – Giải tích 12 dành cho học sinh lớp 12 tự bồi dưỡng, nâng cao và rèn luyện kĩ năng giải toán theo chương trình mới.
Lý thuyết số phức bao gồm: số phức Z, phần thực a, phần ảo b , biểu diễn số thực trên mặt phẳng tọa độ, dạng đại số của số thực. – Số phức z = a + bi có phần thực là a, phần ảo là b (a, b ε R và [latex]\displaystyle i_{{}}^{2}[/latex]
Định nghĩa và tính chất của hàm số mũ, hàm số logarit. Đồ thị của hàm số logarit, công thức đạo hàm logarit. – Định nghĩa logarit – Tính chất hàm số mũ, hàm số logarit – Công thức đạo hàm logarit
Hướng dẫn sử dụng lý thuyết ứng dụng của tích phân trong hình học bao gồm: tính diện tích hình phẳng, thể tích vật thể, thể tích khối tròn xoay. Các phương pháp tính diện tích, thể tích bằng tích phân: 1. Tính diện tích hình phẳng a) Nếu hình phẳng được giới hạn bởi đồ
Tiếp theo bài viết về lý thuyết nguyên hàm, ở bài này là lý thuyết tích phân bao gồm: định nghĩa, tính chất và phương pháp tính. 1. Định nghĩa tích phân Cho hàm số f(x) liên tục trên đoạn [a;b]. Giả sử F(x) là một nguyên hàm của hàm số f(x) trên đoạn [a;b]
Ở đầu chương 3 này các em sẽ được học về nguyên hàm, chúng ta sẽ cùng nhau tìm hiểu về định nghĩa, tính chất và các định lý của nguyên hàm. Cùng tìm hiểu về: 1. Định nghĩa nguyên hàm Kí hiệu K là khoảng hoặc đoạn hoặc nửa khoảng của R. Cho hàm
Lý thuyết bất phương trình mũ và logarit 1. Khái quát về bất phương trình mũ và logarit Các bất phương trình mũ và bất phương trình logarit rất phong phú về dạng và phương pháp giải. Một cách tổng quát, bất phương trình mũ và logarit là các bất phương trình có chứa biểu
Ôn tập lý thuyết phương trình mũ và phương trình logarit 1. Các khái niệm về phương trình mũ và phương trình logarit – Phương trình mũ cơ bản là phương trình có dạng [latex]\displaystyle a_{{}}^{x}=b[/latex], trong đó a,b là hai số đã cho, a dương và khác 1; – Phương trình logarit cơ bản