Lý thuyết logarit 1. Định nghĩa logarit Cho hai số dương a, b với a#1. Nghiệm duy nhất của phương trình [latex]\displaystyle a_{{}}^{x}=b[/latex] được gọi là [latex]\displaystyle {{\log }_{a}}b[/latex] ( tức là số α có tính chất là [latex]\displaystyle a_{{}}^{\alpha }=b[/latex]). 2. Logarit thập phân và logarit tự nhiên Có 2 loại logarit đó là:
Khái niệm hàm số lũy thừa, Đạo hàm của hàm số lũy thừa với số mũ tổng quát, Đạo hàm của hàm số lũy thừa với số mũ nguyên dương, nguyên âm, Đạo hàm của căn thức 1. Khái niệm hàm số lũy thừa Hàm số lũy thừa là các hàm số dạng y = [latex]\displaystyle x_{{}}^{\alpha }[/latex],
Lý thuyết lũy thừa, cách tính lũy thừa của một số 1. Khái niệm lũy thừa Lũy thừa là các biểu thức dạng [latex]\displaystyle x_{{}}^{\alpha }[/latex], trong đó x, α là những số thực, x được gọi là cơ số và α được gọi là số mũ. Lũy thừa có các tính chất sau: 2. Các định
Tính đơn điệu của hàm số y = f(x) 1. Định nghĩa hàm số tăng, hàm số giảm Hàm số f xác định trên K. Với mọi [latex]\displaystyle {{x}_{1}},{{x}_{2}}[/latex] thuộc K và [latex]\displaystyle {{x}_{1}}>{{x}_{2}}[/latex] – Nếu [latex]\displaystyle f({{x}_{1}})>f({{x}_{2}})[/latex] thì hàm số y = f(x) tăng trên K – Nếu [latex]\displaystyle f({{x}_{1}})<f({{x}_{2}})[/latex] thì hàm số y
Tóm tắt lý thuyết sự đồng biến, sự nghịch biến của hàm số Ta kí hiệu K là một khoảng, một đoạn hoặc một nửa cho trước. 1. Khái niệm đồng biến, nghịch biến của hàm số y = f(x) Hàm số y = f(x) đồng biến (tăng) trên K ⇔ ∀ [latex]\displaystyle {{x}_{1}},{{x}_{2}}[/latex] ∈
Lý thuyết cực trị của hàm số 1. Định nghĩa cực trị của hàm số Cho hàm số y = f(x) liên tục trên khoảng (a ; b) và điểm [latex]\displaystyle {{x}_{0}}[/latex] ∈ (a ; b) – Nếu tồn tại số h > 0 sao cho f(x) < f([latex]\displaystyle {{x}_{0}}[/latex]), ∀x ∈ ([latex]\displaystyle {{x}_{0}}[/latex] –
Lý thuyết giá trị nhỏ nhất, giá trị lớn nhất của hàm số Tóm tắt kiến thức 1. Khái niệm giá trị nhỏ nhất và giá trị lớn nhất của hàm số Cho hàm số y = f(x) xác định trên tập D. – Số m là giá trị nhỏ nhất (GTNN) của hàm số
Tóm tắt lý thuyết về đường tiệm cận của đồ thị hàm số bất kì 1. Đường tiệm cận đứng Đường thẳng (d): [latex]x={{x}_{0}}[/latex] được gọi là đường tiệm cận đứng của đồ thị (C) của hàm số y=f(x) nếu [latex]\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=+\infty[/latex] hoặc [latex]\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=+\infty[/latex] hoặc [latex]\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=-\infty[/latex] hoặc [latex]\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=-\infty[/latex]
Khảo sát sự biến thiên và vẽ đồ thị của hàm số là bài toán cơ bản dành cho học sinh lớp 12. Đây cũng là dạng bài luôn có trong các đề thi tuyển sinh đại học, THPT quốc gia Tóm tắt lý thuyết khảo sát sự biến thiên và vẽ đồ thị hàm số