Danh mục: Toán lớp 8

Tính đơn điệu của hàm số y = f(x)

Tính đơn điệu của hàm số y = f(x) 1. Định nghĩa hàm số tăng, hàm số giảm Hàm số f xác định trên K. Với mọi [latex]\displaystyle {{x}_{1}},{{x}_{2}}[/latex] thuộc K và [latex]\displaystyle {{x}_{1}}>{{x}_{2}}[/latex] – Nếu [latex]\displaystyle f({{x}_{1}})>f({{x}_{2}})[/latex] thì hàm số y = f(x) tăng trên K – Nếu [latex]\displaystyle f({{x}_{1}})<f({{x}_{2}})[/latex] thì hàm số y

Cực trị của hàm số

Lý thuyết cực trị của hàm số 1. Định nghĩa cực trị của hàm số Cho hàm số y = f(x) liên tục trên khoảng (a ; b) và điểm [latex]\displaystyle {{x}_{0}}[/latex] ∈ (a ; b) – Nếu tồn tại số h > 0 sao cho f(x) < f([latex]\displaystyle {{x}_{0}}[/latex]), ∀x ∈ ([latex]\displaystyle {{x}_{0}}[/latex] –

Lý thuyết đường tiệm cận

Tóm tắt lý thuyết về đường tiệm cận của đồ thị hàm số bất kì 1. Đường tiệm cận đứng Đường thẳng (d): [latex]x={{x}_{0}}[/latex] được gọi là đường tiệm cận đứng của đồ thị (C) của hàm số y=f(x) nếu [latex]\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=+\infty[/latex] hoặc [latex]\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=+\infty[/latex] hoặc [latex]\underset{x\to x_{0}^{-}}{\mathop{\lim }}\,f(x)=-\infty[/latex] hoặc [latex]\underset{x\to x_{0}^{+}}{\mathop{\lim }}\,f(x)=-\infty[/latex]